

Thames Valley Perl Mongers

The Perl Debugger

David Pottage

Overview

● Perl Debugger
● Invoked with: perl -d <script>
● An interactive command line debugger
● No GUI
● Works remotely on any console.
● Built into perl. Nothing extra to install.
● Internal help & list of commands with '?'

Hello World
sub main

{

 my $opts=getArgs();

 if(exists $opts->{'user'})

 {

 printf "Hello %s!\n", $opts->{'user'};

 }

 else

 {

 print "Hello World!\n";

 }

 return 0;

}

exit main();

Showing source code

● l Show next 10 lines of code
– Breakable lines marked with a colon.

– Or specify line numbers

● v Show lines around the current one
– Or specify a line number.

● Both commands can be repeated to show more
lines.

Step in, over & out.

● n Next code line. (step over)
– Does not step into function calls.

● s Step execution.
– Will step into function calls

● r Return from current function (step out)
– Reports what the function returned & it's package.

– This can be too verbose.

Debugger Control

● R Attempt to restart the debugger
– Useful as breakpoints etc are retained.

– Not always reliable.

– Fails if the current directory has been changed.

– Also fails if the command line has been changed.

● Command line history not working?
– Install Term::ReadLine::Perl from CPAN or your

linux distribution

Breakpoints and Variables
sub get_machines

{

 # parse /etc/ethers to get the list

 my %retHash;

 while (my $line = <DATA>)

 {

 my($mac, $ip, $name) = split /\s+/, $line;

 if(valid_ip($ip))

 {

 $retHash{$name} = { 'mac'=>$mac, 'ip'=>$ip};

 }

 }

 return \%retHash;

}

Breakpoints

● b <line> Set a breakpoint on a line
– Can also specify a condition

– This is very flexible

● c <line> Continue to a line
– Will stop earlier if a breakpoint is reached first.

● B <line> Remove a breakpoint
● L List all breakpoints

Examine variables with x

● x is the most versatile debugger command.
– Dumps the contents of simple variables

– Can be used to test bits of code like a shell
● Regular expressions, functions calls, anything.

– Hashes are output as arrays, so dereference them.
● Eg: x \%hash

Complex Classes
use HTML::Element;

use HTML::TreeBuilder;

sub parseResPage

{

 My ($rawHTML) = @_;

 my $tree = HTML::TreeBuilder->new_from_content($rawHTML);

 my @headings = $tree->look_down('_tag' => 'tr',

 'class' => 'post-head post_head');

 my $firstHeading = shift @headings;

 my $headText = $firstHeading->as_text();

 return $headText;

}

Limit recursive depth with x

● As before we can use x to show data
– But it is not helpful because the screen fills with

junk.

– So use x [<depth>] <variable>
● You will learn what depth is most helpful. I find 4 best for

HTML::Element, or 3 for DBIC.

– You can try out function calls to find what is correct.

Explicit breakpoints
package Hello::Controller::Root;

use Moose;

use namespace::autoclean;

BEGIN { extends 'Catalyst::Controller' }

sub hello :Global {

 my ($self, $c, $user) = @_;

 if(defined $user)

 {

 $c->response->body("Hello, ".$user."!");

 }

 else

 {

 $c->response->body("Hello, World!");

 }

}

Other ways to breakpoint

● Write c <fully qualified function name>
– But the package must be loaded

– I often put the FQN as a comment at the start of each
function.

● Use DB::single=1 to add a breakpoint.
– Works in any depth of code

– Does not require the package to be loaded
– But cannot be removed at runtime so can be annoying.

db::single

Other tips

● perl -demo
– Gives you a shell to quickly evaluate stuff

● Windows users: run start perl -d script.
– Prevents perl and cmd.com from fighting.

● Multi process programming
– Use an xterm window on unix/linux, perl will create new

windows for you.

– But every thread hitting a breakpoint is a new window.
● Including falling off the end.
● Use DB::inhibit_exit =0

db::inhibit_exit

Alternatives

● Devel::ptkdb
● GUI debugger using Tk libraries
● Need to install the package from CPAN, or a distro package.
● Requires an X11 display.

– Can be workable for remote debugging over ssh x forwarding.

● Hard to test expressions or regular expressions
● Shows you the stack, lets you examine variables further up.

Alternatives (2)

● Editor integrated debuggers
– Vi

– Eclipse EPIC

– Many others

● Quality is variable
– Sometimes hard to test out expressions

– Some are unstable and will leave orphaned perl
processes behind.

– I tend not to use them, but don't let me stop you!

Questions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

